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Equilibrium points:

In the sense of a phase space, an equilibrium point is a point with 0 velocity and constant

displacement. If left undisturbed, a body stays in equilibrium for an infinite amount of time. The

different types of equilibrium are classified by the motion of the body when a small force is

applied on it. The 3 main classes are stable, unstable and neutral equilibrium. In stable

equilibrium, a small force causes the body to move and return to its original position, as force is

in the opposite direction of displacement. In unstable equilibrium, a small displacement leads

the body to move further and further away from the equilibrium point. Another example is neutral

equilibrium, where a displacement causes the body to move and form a new equilibrium point. A

combination of these 3 can form many other types of equilibrium. A few include horse saddle

equilibrium, where there is stable equilibrium in one direction, and unstable in all the other ones,

and Mexican hat equilibrium, where there is a ring of neutral equilibrium, and stable equilibrium

on either side. These are only possible in 3 dimensions, which we will not go into in the report.

What is a phase space?

A phase space is an arbitrary space in which all the possible states of a system can be

represented using the knowledge of two dynamic variables. The two dynamic variables are



position and velocity (or momentum). In one dimension, one axis will display position and

another, velocity. For example, in one dimension, you would need one axis to display position

and one for velocity, which is mainly what we dealt with. When moving to higher dimensions the

phase space becomes harder to visualize. In three dimensions 3 axes will be required for

position and 3 for velocity. This will mean that the phase space will have 6 axes.

Phase trajectories and phase portraits

The velocity and position of a body changes as time progresses. This graph can be plotted in

the phase space which forms a relation between position and velocity, independent of time. The

curve that you get by joining all the points is called the phase trajectory of the body and the set

of all possible phase trajectories of a body is called the phase portrait.

Properties of phase trajectories

Phase trajectories can’t intersect themselves - Phase trajectories are time independent. Due to

this, at any particular initial state, the body must have only one unique trajectory that it follows.

Assuming there is an intersection, there are 2 possible paths that the body could take from the

point of intersection, which violates the fact that there can be only one unique path. Hence an

intersection is not possible.

Energy surface - Assuming that total energy of the system is constant, the possible states of the

system are limited in the sense that the sum of the kinetic and potential energy must be equal to

the total energy. The possible states occupy a subspace of the phase space that is called the

energy surface.

Periodic motion - Despite the fact that intersections are not possible in the graph, it can however

form a closed loop. A closed loop implies that the body has periodic motion, as the same cycle

is repeated, and the body reaches the initial state after a specific “time period”.

Simple Harmonic Oscillator

Simple harmonic oscillator is an example of a stable equilibrium. When a body is displaced to a

small extent and comes back to its original state it is in stable equilibrium. A simple pendulum is

an example of stable equilibrium.The potential energy of the system in simple harmonic



oscillator is . The total energy is denoted by , where is𝑈(𝑥) = 𝑘𝑥2
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the kinetic energy. On rearranging the equation we get which is in the
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form of an equation for an ellipse.

Inverted Harmonic Oscillator

This situation represents a hypothetical situation with potential energy . The𝑈(𝑥) = −𝑘𝑥2
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total energy would be , where is the kinetic energy. The equation is
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rearranged to get , which is in the form of an equation for a hyperbola.
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The orientation of the hyperbola depends on the value of E. If E is greater than 0, the axis of the

hyperbola is x = 0 and vice versa. If, however, E = 0, an interesting situation appears. If a body

is moving towards the peak of the potential energy curve, it is constantly decelerating, and the

value of the deceleration increases as well. This means that the velocity tends to zero, but never

reaches 0, taking an infinite amount of time to reach the origin. This explains the apparent

intersection of the straight lines in the figure below.



Miscellaneous Example 1:

Let us take potential energy . The potential energy curve has 2 local𝑈(𝑥) = (𝑥2 − 𝑎2)2

minima in between which there is a local maxima. Beyond the local minima, the curve goes to

infinity. Using math we will not discuss in this report, we proved that at any local minima the

curve behaves as a harmonic oscillator, and at a local maxima, the curve behaves as an

inverted harmonic oscillator. Using this we can say that the phase trajectories also behave in

similar fashion. If the total energy is not enough to cross the local maxima, the curve gets

trapped in a harmonic oscillator fashion, around the local minima which you can see as ellipses.

If the energy is enough to overcome the local maxima, it can move from, say point A to point B

shown on the graph below. This corresponds to the outermost phase trajectories. At A and B the

velocity would be 0, as the potential energy is then equal to total energy. There is a third case

where the total energy is exactly equal to the potential energy at the local maxima. In this case,

like the inverted harmonic oscillator, the graph approaches the origin, but takes infinite time to

do so.



Miscellaneous Example 2:

Now, let us take potential energy . In this case, the potential energy curve has𝑈(𝑥) = 𝑥2𝑒−𝑥
2

2 local maxima, in between which there is a local minima. On either side of the local maxima,

the curve tends to zero. There are a few cases to explore here. If the total energy is less than

that of the local maxima, the curve can follow one of 3 cases. If it is beyond the maxima, it can

rise up to a certain level along the curve, and then fall back down. This is represented by the 2

parabolas on either side. If it is in between the maxima, it takes an elliptical phase trajectory,

shown in the middle. If energy is greater than that of the local maxima, it can pass over the

maxima, down through the minima, and over the next maxima as well. After this, it moves for an

infinite amount of time, with potential energy approaching zero (kinetic energy approaching total

energy). These are shown as the topmost and bottommost graphs. If energy is equal to that of

the maxima, it yet again approaches the maxima, but takes infinite time to do so.



Singularities

A singular point is a point on a curve where the tangent can not clearly be defined. At singular

points the curve cannot be differentiated. One class of singular points is a double point. A

double point is a point through which 2 branches of the curve pass. At double points, we can

represent the slope ‘m’ in a quadratic c0+c1m+c2m2. If m has 2 distinct real solutions, the

curve is smooth and non-singular. If, however, the roots are imaginary, it is called a crunode,

where the curve intersects itself. If there is a single root, it is called a cusp, which is a sharp

turning point. If there are imaginary roots, it is called an isolated singularity (acnode).
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